Multimodal Ontology Fusion

Overview

Recent work shows that combining visual concepts with medical domain knowledge significantly improves explainable medical image classification. Multimodal approaches that integrate imaging, molecular, and clinical data provide holistic insights into disease processes.

1. Ontology Alignment Strategies

A. Hierarchical Alignment Approach

Concept: Create a unified ontology hierarchy that bridges visual features with medical concepts.

from owlready2 import *
import rdflib
from rdflib import Graph, Namespace, RDF, RDFS, OWL

# Define namespace hierarchy
medical_ns = Namespace("http://medical-onto.org/")
image_ns = Namespace("http://image-classification.org/")
fusion_ns = Namespace("http://fusion-onto.org/")

# Create fusion ontology
fusion_onto = get_ontology("http://fusion-onto.org/multimodal")

class VisualConcept(Thing):
    """Base class for image-derived concepts"""
    namespace = fusion_onto

class MedicalConcept(Thing):
    """Base class for medical domain concepts"""
    namespace = fusion_onto

class ImagedMedicalEntity(VisualConcept, MedicalConcept):
    """Fusion class linking visual and medical concepts"""
    namespace = fusion_onto

# Define bridging properties
class visuallyRepresents(ObjectProperty):
    """Links visual features to medical concepts"""
    domain = [VisualConcept]
    range = [MedicalConcept]

class hasImageFeature(ObjectProperty):
    """Links medical entities to their visual features"""
    domain = [MedicalConcept]
    range = [VisualConcept]

B. Cross-Domain Mapping

Strategy: Map equivalent concepts across ontologies using semantic similarity.

class OntologyMapper:
    """Maps concepts between image and medical ontologies"""
    
    def __init__(self, image_onto_path: str, medical_onto_path: str):
        self.image_onto = get_ontology(image_onto_path).load()
        self.medical_onto = get_ontology(medical_onto_path).load()
        self.mappings = {}
    
    def create_semantic_mappings(self):
        """Create mappings based on semantic similarity"""
        mappings = {
            # Visual → Medical mappings
            "circular_structure": "cell_nucleus",
            "irregular_boundary": "malignant_growth_pattern", 
            "high_density_region": "hypercellular_area",
            "color_variation": "tissue_heterogeneity",
            "texture_pattern": "histological_pattern"
        }
        
        for visual_concept, medical_concept in mappings.items():
            self._create_mapping_axiom(visual_concept, medical_concept)
    
    def _create_mapping_axiom(self, visual_term: str, medical_term: str):
        """Create OWL axiom linking concepts"""
        # Implementation would create equivalence or subsumption axioms
        pass

2. Multi-Modal Data Integration

A. Pathomic Fusion Approach

import torch
import torch.nn as nn

class MultiModalOntologyFusion(nn.Module):
    """Integrates image classification with medical ontological knowledge"""
    
    def __init__(self, image_feature_dim: int, ontology_embedding_dim: int, num_medical_concepts: int):
        super().__init__()
        
        # Image feature encoder
        self.image_encoder = nn.Sequential(
            nn.Linear(image_feature_dim, 512),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(512, 256)
        )
        
        # Medical ontology encoder
        self.medical_encoder = nn.Sequential(
            nn.Linear(num_medical_concepts, 256),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, 128)
        )
        
        # Cross-modal attention
        self.cross_attention = nn.MultiheadAttention(
            embed_dim=256, num_heads=8, batch_first=True
        )
        
        # Fusion layers
        self.fusion_layers = nn.Sequential(
            nn.Linear(256 + 128, 256),
            nn.ReLU(),
            nn.Dropout(0.4),
            nn.Linear(256, 64)
        )
        
        # Classification head
        self.classifier = nn.Linear(64, 1)  # Binary classification
    
    def forward(self, image_features: torch.Tensor, medical_concepts: torch.Tensor) -> torch.Tensor:
        # Encode modalities
        img_encoded = self.image_encoder(image_features)
        med_encoded = self.medical_encoder(medical_concepts)
        
        # Cross-modal attention (image attending to medical concepts)
        img_attended, _ = self.cross_attention(
            img_encoded.unsqueeze(1),
            med_encoded.unsqueeze(1), 
            med_encoded.unsqueeze(1)
        )
        img_attended = img_attended.squeeze(1)
        
        # Fusion
        fused = torch.cat([img_attended, med_encoded], dim=1)
        fused_features = self.fusion_layers(fused)
        
        # Classification
        output = self.classifier(fused_features)
        return output

B. SPARQL-Based Feature Alignment

from SPARQLWrapper import SPARQLWrapper, JSON

class SemanticFeatureAligner:
    """Aligns image features with medical concepts using SPARQL"""
    
    def __init__(self, endpoint_url: str):
        self.sparql = SPARQLWrapper(endpoint_url)
        self.sparql.setReturnFormat(JSON)
    
    def align_visual_to_medical(self, visual_features: List[str], medical_domain: str) -> Dict[str, List[str]]:
        """Find medical concepts related to visual features"""
        alignments = {}
        
        for feature in visual_features:
            query = f"""
            PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
            PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
            
            SELECT DISTINCT ?medical_concept ?similarity WHERE {{
                ?visual_concept rdfs:label "{feature}" .
                ?visual_concept skos:related ?medical_concept .
                ?medical_concept rdf:type <{medical_domain}> .
                OPTIONAL {{ ?mapping ont:similarity ?similarity }}
            }}
            ORDER BY DESC(?similarity)
            LIMIT 5
            """
            
            self.sparql.setQuery(query)
            results = self.sparql.query().convert()
            
            alignments[feature] = [
                result['medical_concept']['value'] 
                for result in results['results']['bindings']
            ]
        
        return alignments

3. Explainable AI Integration

A. Explainable Multi-Dimensional Alignment

class ExplainableMultiModalFusion:
    """Provides interpretable fusion of image and medical ontology features"""
    
    def __init__(self):
        self.concept_network = self._build_concept_network()
        self.attention_maps = {}
    
    def generate_explanations(self, 
                            image_features: torch.Tensor,
                            medical_concepts: torch.Tensor,
                            prediction: torch.Tensor) -> Dict[str, Any]:
        
        explanations = {
            "concept_alignment": self._explain_concept_alignment(
                image_features, medical_concepts
            ),
            "feature_importance": self._compute_feature_importance(
                image_features, prediction
            ),
            "ontology_reasoning": self._explain_ontological_reasoning(
                medical_concepts, prediction
            )
        }
        
        return explanations

4. Evaluation Metrics

A. Multi-Modal Evaluation Framework

class MultiModalEvaluator:
    """Evaluates fusion of image and medical ontologies"""
    
    def __init__(self):
        self.metrics = {
            'accuracy': [],
            'precision': [],
            'recall': [],
            'f1_score': [],
            'concept_alignment_score': []
        }
    
    def evaluate(self, 
                predictions: torch.Tensor, 
                targets: torch.Tensor,
                concept_alignment_scores: Optional[Dict] = None):
        """Compute evaluation metrics"""
        # Standard classification metrics
        self.metrics['accuracy'].append(accuracy_score(targets, predictions > 0.5))
        precision, recall, f1, _ = precision_recall_fscore_support(
            targets, predictions > 0.5, average='binary'
        )
        
        self.metrics['precision'].append(precision)
        self.metrics['recall'].append(recall)
        self.metrics['f1_score'].append(f1)
        
        # Concept alignment metrics if available
        if concept_alignment_scores:
            self.metrics['concept_alignment_score'].append(
                np.mean(list(concept_alignment_scores.values()))
            )
    
    def get_summary(self) -> Dict[str, float]:
        """Return mean of all metrics"""
        return {
            metric: np.mean(values) 
            for metric, values in self.metrics.items() 
            if values  # Only include metrics that have values
        }

5. Practical Applications

A. Medical Image Analysis

  • Pathology: Combine histological features with disease ontologies
  • Radiology: Fuse imaging findings with anatomical ontologies
  • Ophthalmology: Link retinal features with eye disease ontologies

B. Industrial Applications

  • Manufacturing: Combine visual inspection with quality control ontologies
  • Autonomous Vehicles: Fuse sensor data with traffic rule ontologies
  • Robotics: Link visual perception with task ontologies

6. Challenges and Future Directions

Key Challenges

  1. Semantic Gap: Bridging low-level visual features with high-level concepts
  2. Scalability: Handling large-scale ontologies efficiently
  3. Explainability: Making fusion decisions interpretable to domain experts
  4. Data Scarcity: Limited annotated multimodal datasets

Future Directions

  • Self-supervised Learning: Leveraging unlabeled multimodal data
  • Neuro-Symbolic Integration: Combining neural networks with symbolic reasoning
  • Federated Learning: Privacy-preserving distributed learning across institutions
  • Cross-modal Pretraining: Learning joint representations from multiple modalities