Ontology-Guided MoE with Attention
Combining Mixture of Experts with Ontologies and Attention
Overview
This approach combines the specialization benefits of Mixture of Experts (MoE) with the structured knowledge of ontologies and the focused processing power of attention mechanisms. Each expert specializes in specific ontological concepts while attention mechanisms guide focus to relevant image regions.
Core Architecture
A. Ontology-Structured Expert Assignment
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Tuple, Optional
class OntologyGuidedRouter(nn.Module):
"""Routes inputs to experts based on ontological concept hierarchy"""
def __init__(self,
ontology_graph: Graph,
num_experts: int,
input_dim: int,
top_k: int = 2):
super().__init__()
self.ontology = ontology_graph
self.num_experts = num_experts
self.top_k = top_k
# Build concept hierarchy from ontology
self.concept_hierarchy = self._build_concept_hierarchy()
# Concept embedding layer
self.concept_embedder = nn.Embedding(
len(self.concept_hierarchy), input_dim
)
# Expert assignment network
self.router = nn.Sequential(
nn.Linear(input_dim, 512),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(512, num_experts)
)
# Ontology-aware gating
self.ontology_gate = nn.Sequential(
nn.Linear(input_dim + len(self.concept_hierarchy), 256),
nn.ReLU(),
nn.Linear(256, num_experts)
)
def _build_concept_hierarchy(self) -> Dict[str, int]:
"""Extract concept hierarchy from ontology"""
concepts = {}
concept_id = 0
# Query ontology for hierarchical concepts
query = """
SELECT DISTINCT ?concept ?parent WHERE {
?concept rdfs:subClassOf ?parent .
FILTER(?concept != ?parent)
}
ORDER BY ?parent ?concept
"""
results = self.ontology.query(query)
for concept, parent in results:
concept_name = str(concept).split('/')[-1]
if concept_name not in concepts:
concepts[concept_name] = concept_id
concept_id += 1
return concepts
def forward(self,
features: torch.Tensor,
concept_probs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
features: Input features [batch_size, feature_dim]
concept_probs: Predicted concept probabilities [batch_size, num_concepts]
Returns:
expert_weights: Expert selection weights [batch_size, num_experts]
expert_indices: Top-k expert indices [batch_size, top_k]
"""
# Standard routing based on features
routing_logits = self.router(features)
# Ontology-aware routing
concept_features = torch.matmul(concept_probs, self.concept_embedder.weight)
combined_features = torch.cat([features, concept_probs], dim=-1)
ontology_logits = self.ontology_gate(combined_features)
# Combine routing strategies
combined_logits = routing_logits + ontology_logits
expert_weights = F.softmax(combined_logits, dim=-1)
# Select top-k experts
top_k_weights, top_k_indices = torch.topk(expert_weights, self.top_k)
top_k_weights = top_k_weights / top_k_weights.sum(dim=-1, keepdim=True)
return top_k_weights, top_k_indicesB. Concept-Specialized Experts
class ConceptSpecializedExpert(nn.Module):
"""Expert network specialized for specific ontological concepts"""
def __init__(self,
input_dim: int,
output_dim: int,
concept_id: int):
super().__init__()
self.concept_id = concept_id
self.network = nn.Sequential(
nn.Linear(input_dim, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, output_dim)
)
# Concept-specific initialization
self._initialize_for_concept()
def _initialize_for_concept(self):
"""Initialize expert based on its concept"""
# Custom initialization logic based on concept type
for name, param in self.named_parameters():
if 'weight' in name:
nn.init.xavier_uniform_(param)
elif 'bias' in name:
nn.init.zeros_(param)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.network(x)Training Strategy
A. Progressive Training
def train_ontology_guided_moe(model: nn.Module,
train_loader,
val_loader,
num_epochs: int = 100):
"""Progressive training strategy for ontology-guided MoE"""
# Initialize optimizers and loss functions
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()
# Learning rate scheduler
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=num_epochs
)
for epoch in range(num_epochs):
model.train()
total_loss = 0
# Training loop
for batch_idx, (images, targets) in enumerate(train_loader):
images, targets = images.to(device), targets.to(device)
# Forward pass
outputs = model(images)
# Calculate losses
classification_loss = criterion(outputs['logits'], targets)
# Expert load balancing loss
load_balance_loss = model.calculate_load_balancing_loss()
# Concept alignment loss
concept_loss = model.calculate_concept_alignment_loss()
# Total loss with regularization
total_loss = (
classification_loss +
0.1 * load_balance_loss +
0.05 * concept_loss
)
# Backward pass and optimize
optimizer.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
if batch_idx % 100 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], "
f"Step [{batch_idx}/{len(train_loader)}], "
f"Loss: {total_loss.item():.4f}")
# Validation
val_metrics = validate(model, val_loader)
print(f"Epoch {epoch+1} Validation: {val_metrics}")
# Update learning rate
scheduler.step()Visual Attention Mechanism
A. Ontology-Guided Attention
class OntologyGuidedVisualAttention(nn.Module):
"""Visual attention mechanism guided by ontological concepts"""
def __init__(self,
feature_dim: int,
num_concepts: int,
num_heads: int = 8):
super().__init__()
self.feature_dim = feature_dim
self.num_heads = num_heads
self.head_dim = feature_dim // num_heads
# Concept projection layers
self.concept_projections = nn.ModuleList([
nn.Linear(feature_dim, feature_dim)
for _ in range(num_concepts)
])
# Multi-head attention
self.attention = nn.MultiheadAttention(
embed_dim=feature_dim,
num_heads=num_heads,
batch_first=True
)
# Output projection
self.output_proj = nn.Linear(feature_dim, feature_dim)
def forward(self,
features: torch.Tensor,
concept_probs: torch.Tensor) -> torch.Tensor:
"""
Args:
features: Input features [B, C, H, W]
concept_probs: Concept probabilities [B, num_concepts]
Returns:
Attended features [B, C, H, W]
"""
B, C, H, W = features.shape
# Reshape features for attention
spatial_features = features.flatten(2).transpose(1, 2) # [B, H*W, C]
# Generate concept-specific queries
concept_queries = []
for i, proj in enumerate(self.concept_projections):
# Get concept-specific query
concept_mask = concept_probs[:, i].unsqueeze(-1) # [B, 1]
concept_query = proj(spatial_features) # [B, H*W, C]
concept_queries.append(concept_query * concept_mask.unsqueeze(-1))
# Combine concept queries
query = torch.stack(concept_queries, dim=1) # [B, num_concepts, H*W, C]
query = query.mean(dim=1) # Average concept queries
# Apply multi-head attention
attended, _ = self.attention(
query=query,
key=spatial_features,
value=spatial_features
)
# Residual connection and output projection
attended = self.output_proj(attended + query)
# Reshape back to spatial dimensions
attended = attended.transpose(1, 2).view(B, C, H, W)
return attendedComplete Model Architecture
A. Ontology-Guided MoE Vision
class OntologyGuidedMoEVision(nn.Module):
"""Complete Ontology-Guided Mixture of Experts for Vision"""
def __init__(self,
ontology_path: str,
num_classes: int,
num_experts: int = 8,
top_k: int = 2):
super().__init__()
# Load ontology
self.ontology = self._load_ontology(ontology_path)
# Feature extractor (e.g., ResNet backbone)
self.feature_extractor = self._build_feature_extractor()
feature_dim = 2048 # Output dimension of feature extractor
# Concept predictor
self.concept_predictor = nn.Sequential(
nn.Linear(feature_dim, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, len(self.concept_hierarchy)),
nn.Sigmoid()
)
# Router
self.router = OntologyGuidedRouter(
ontology_graph=self.ontology,
num_experts=num_experts,
input_dim=feature_dim,
top_k=top_k
)
# Experts
self.experts = nn.ModuleList([
ConceptSpecializedExpert(
input_dim=feature_dim,
output_dim=feature_dim,
concept_id=i % len(self.concept_hierarchy) # Distribute concepts
) for i in range(num_experts)
])
# Attention mechanism
self.attention = OntologyGuidedVisualAttention(
feature_dim=feature_dim,
num_concepts=len(self.concept_hierarchy)
)
# Classification head
self.classifier = nn.Linear(feature_dim, num_classes)
def _load_ontology(self, path: str) -> Graph:
"""Load and preprocess ontology"""
# Implementation depends on ontology format
pass
def _build_feature_extractor(self) -> nn.Module:
"""Build CNN backbone"""
# Implementation depends on the backbone architecture
pass
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
# Extract features
features = self.feature_extractor(x)
# Predict concept probabilities
concept_probs = self.concept_predictor(features.mean([2, 3]))
# Apply attention
attended_features = self.attention(features, concept_probs)
# Route to experts
expert_weights, expert_indices = self.router(attended_features, concept_probs)
# Process with experts
expert_outputs = []
for i, expert in enumerate(self.experts):
mask = (expert_indices == i).any(dim=1).float()
expert_out = expert(attended_features) * mask.view(-1, 1, 1, 1)
expert_outputs.append(expert_out)
# Combine expert outputs
combined = sum(expert_outputs)
# Final classification
pooled = F.adaptive_avg_pool2d(combined, 1).squeeze()
logits = self.classifier(pooled)
return {
'logits': logits,
'concept_probs': concept_probs,
'expert_weights': expert_weights,
'attention_maps': attended_features
}
def calculate_load_balancing_loss(self) -> torch.Tensor:
"""Encourage balanced expert utilization"""
# Implementation details
pass
def calculate_concept_alignment_loss(self) -> torch.Tensor:
"""Ensure experts specialize in their assigned concepts"""
# Implementation details
passAdvanced Features
A. Hierarchical Ontology Attention
class HierarchicalOntologyAttention(nn.Module):
"""Multi-level attention following ontology hierarchy"""
def __init__(self, feature_dim: int, ontology_levels: List[int]):
super().__init__()
self.levels = nn.ModuleList([
nn.Sequential(
nn.Conv2d(feature_dim, feature_dim, 3, padding=1),
nn.ReLU(),
nn.Conv2d(feature_dim, 1, 1)
) for _ in range(len(ontology_levels))
])
self.output_conv = nn.Conv2d(
feature_dim * len(ontology_levels),
feature_dim,
1
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Generate attention maps for each level
attention_maps = [level(x) for level in self.levels]
# Apply attention maps
attended_features = []
for attn in attention_maps:
attn = torch.sigmoid(attn) # [B, 1, H, W]
attended = x * attn
attended_features.append(attended)
# Concatenate and project
out = torch.cat(attended_features, dim=1)
return self.output_conv(out)Applications and Use Cases
A. Medical Image Analysis
- Pathology: Specialized experts for different tissue structures
- Radiology: Hierarchical attention for multi-scale analysis
- Ophthalmology: Concept-guided analysis of retinal images
B. Industrial Applications
- Manufacturing: Defect detection with explainable reasoning
- Autonomous Vehicles: Scene understanding with safety constraints
- Robotics: Task-specific expert modules
Performance Optimization
A. Efficient Expert Routing
class SparseExpertRouter(nn.Module):
"""Efficient routing with sparse expert selection"""
def __init__(self, num_experts: int, capacity_factor: float = 1.0):
super().__init__()
self.num_experts = num_experts
self.capacity_factor = capacity_factor
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# Calculate expert scores
scores = torch.matmul(x, self.expert_weights.t())
# Top-k expert selection with capacity constraints
expert_weights, expert_indices = torch.topk(scores, k=self.top_k)
expert_weights = F.softmax(expert_weights, dim=-1)
# Apply capacity constraints
if self.training:
# Add noise for better exploration
noise = torch.rand_like(expert_weights) * 0.01
expert_weights = expert_weights + noise
# Re-normalize
expert_weights = expert_weights / expert_weights.sum(dim=-1, keepdim=True)
return expert_weights, expert_indicesEvaluation and Interpretation
A. Concept Activation Analysis
def analyze_concept_activation(model: OntologyGuidedMoEVision,
dataloader,
concept_idx: int):
"""Analyze how a specific concept activates the experts"""
model.eval()
concept_activations = []
with torch.no_grad():
for images, _ in dataloader:
images = images.to(device)
outputs = model(images)
# Get expert activations for this concept
concept_mask = (outputs['concept_probs'][:, concept_idx] > 0.5).float()
expert_weights = outputs['expert_weights'] * concept_mask.unsqueeze(-1)
concept_activations.append(expert_weights.cpu().numpy())
# Analyze activation patterns
activations = np.concatenate(concept_activations, axis=0)
mean_activations = activations.mean(axis=0)
return {
'mean_activations': mean_activations,
'all_activations': activations
}Future Directions
- Dynamic Expert Allocation: Automatically adjust the number of experts
- Cross-Modal Integration: Combine with text and other modalities
- Self-Supervised Learning: Learn concepts without explicit supervision
- Federated Learning: Train across distributed datasets while preserving privacy
- Neural-Symbolic Integration: Combine with symbolic reasoning
Implementation Tips
- Start with a small number of experts and gradually increase
- Use progressive training to stabilize learning
- Monitor expert utilization to prevent collapse
- Regularize expert specialization with appropriate loss terms
- Visualize attention maps and expert activations for debugging